

International Journal of Multidisciplinary Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206

Volume 8, Issue 10, October 2025

| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Data Science in Agriculture: A Study on Precision Farming and Remote Sensing

Sandhya HM, Vamshi Krishna C

Assistant Professor, Dept. of Computer Science & Application, The Oxford College of Computer Science,
Bangalore, India

PG Student [MCA], Dept. of Computer Applications and Science, The Oxford College of Computer Science,
Bangalore, India

ABSTRACT: Data analytics has transformed the world by introducing innovative approaches to improve decision-making, analyze trends, and identify opportunities. Today, technologies such as Machine Learning (ML), the Internet of Things (IoT), Artificial Intelligence (AI), and Big Data are revolutionizing traditional agricultural practices. In India, agriculture employs nearly 42% of the workforce but contributes only about 14% to the nation's GDP. This imbalance highlights the urgent need for technological intervention. Although significant research has been carried out on applying data analytics in agriculture, several challenges persist. Limited awareness among farmers, unpredictable data variations in harvest, climate change, pest infestations, and diseases hinder effective prediction and control of supply-demand cycles. This paper provides insights into the role of data science in agriculture, emphasizing precision farming and remote sensing technologies.

KEYWORDS: Data Science, Artificial Intelligence, Machine Learning, Precision Agriculture, Remote Sensing, IoT.

I. INTRODUCTION

Agriculture is one of the largest global sectors, with food demand rising exponentially. To meet this demand, traditional methods must be integrated with modern technologies to optimize resources, improve productivity, and achieve sustainable outcomes. Smart farming, powered by IoT and Big Data analytics, is reshaping the agricultural economy.

IoT refers to a network of interconnected physical devices equipped with sensors, software, and technologies that gather and exchange data. These devices range from simple feedback mechanisms to complex deep learning models, often combined with external Big Data such as weather and market data. As smart machines and sensors become more prevalent, agricultural practices are becoming increasingly data-driven. Advancements in IoT and cloud computing are enhancing real-time decision-making, allowing farmers to respond quickly to unexpected situations such as climate shifts or disease outbreaks. AI models, such as neural networks, are now used for tasks like soil moisture evaluation, crop prediction, and automated application of water, fertilizers, and pesticides.

II. LITERATURE SURVEY

Several research studies highlight the integration of IoT, machine learning, and data analytics in agriculture:

- Akter & Sofi (2021) studied the prediction of apple scab using IoT sensors and linear regression. By analyzing environmental factors such as pH, potassium, and phosphorus, they developed models to forecast disease risk in apple crops.
- Mekonnen et al. (2020) explored wireless sensor networks using open-source hardware and solar-powered IoT systems. Their research demonstrated precision irrigation and real-time monitoring of soil and weather conditions, improving efficiency in water and energy usage.
- Lokhorst et al. (2019) investigated the role of Big Data in dairy farming, emphasizing the untapped potential of integrating multi-source datasets across farms and supply chains for better decision-making.
- Sishodia et al. (2020) discussed remote sensing applications in agriculture, highlighting the use of satellite imagery, GIS, AI, and Big Data to monitor crops, detect diseases, and optimize yield management.

| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

III. PRECISION AGRICULTURE AND SATELLITE IMAGERY

Precision Agriculture (PA) refers to data-driven farming that monitors, analyzes, and manages crops and fields with high accuracy. It minimizes wastage by ensuring resources like pesticides, fertilizers, and water are applied only where needed.

The European Space Agency's Sentinel-2 satellites play a crucial role in precision agriculture by providing high-resolution, multi-temporal imagery. With up to 95% classification accuracy, Sentinel-2 data is valuable for crop monitoring, disease detection, and water stress analysis. Algorithms such as Random Forests, K-Nearest Neighbors, and Support Vector Machines further improve classification accuracy.

By integrating satellite imagery with predictive models, precision agriculture helps farmers make informed decisions regarding crop type selection, irrigation, and pest control.

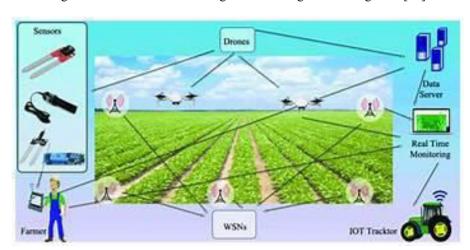
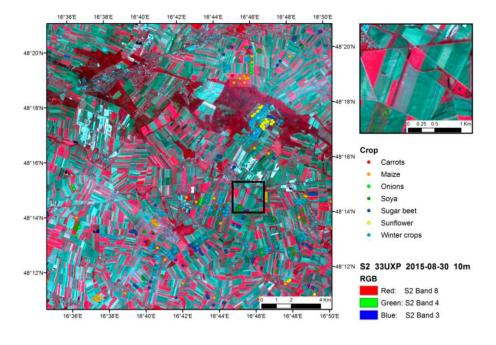
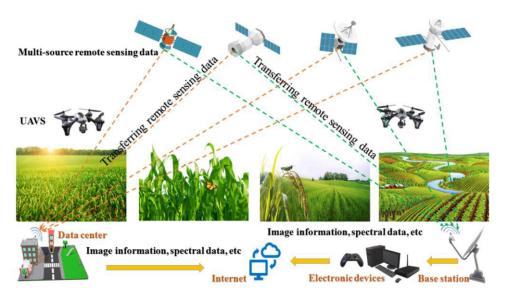



Fig 1. Workflow of Precision Agriculture using IoT and Big Data [12]

Fig 2. Sentinel-2 Satellite Imagery for crop type monitoring [13].


| www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Fig 3. Remote sensing–based vegetation health monitoring [14]

IV. REMOTE SENSING TECHNIQUES

Remote sensing enables farmers to gather agricultural data without direct physical interaction. Historically, aerial photography was used for land mapping, but satellite-based remote sensing has since expanded its scope.

Applications include:

- Identifying soil health and fertility.
- Detecting crop diseases, pest infestations, and water stress.
- Monitoring grazing patterns and weed distribution.
- Assisting financial institutions in evaluating farmland value.

However, challenges exist. The high cost of equipment, complex image processing, and data interpretation difficulties limit widespread adoption. Moreover, satellite interference and processing errors can reduce accuracy. To bridge these gaps, simplified, real-time tools for farmers are urgently required.

V. CONCLUSION

This paper emphasizes the critical role of Data Science in modern agriculture. By integrating AI, IoT, Big Data, and remote sensing, farmers can achieve higher yield, better quality, and efficient resource management. While significant progress has been made, many small-scale farmers still lack access to these technologies. Efforts must be directed toward affordable, farmer-friendly systems that empower them with actionable insights.

The future of agriculture lies in data-driven innovations, and with continuous research and adoption, these technologies will transform farming into a sustainable and efficient domain.

REFERENCES

- [1] K. S. Sidhu, R. Singh, S. Singh, G. Singh, "Data science and analytics in agricultural development," Environment Conservation Journal, Jan. 2021.
- [2] A. Cravero, S. Sepúlveda, "Machine Learning uses and adaptations in Big Data—Applications in Real Cases in Agriculture," Electronics, vol. 10, no. 552, 2021.
- [3] Y. Mekonnen, S. Namuduri, L. Burton, A. Sarwat, S. Bhansali, "Review Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture," J. Electrochem. Soc., vol. 167, 2020.

ISSN: 2582-7219 | www.ijmrset.com | Impact Factor: 8.206 | ESTD Year: 2018 |

International Journal of Multidisciplinary Research in Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

- [4] R. P. Sishodia, R. L. Ray, S. K. Singh, "Remote Sensing Applications in Precision Agriculture," Remote Sensing, Sept. 2020.
- [5] C. Lokhorst, R. M. de Mol, C. Kamphuis, "Big Data in precision dairy farming," Animal Journal, Jan. 2019.
- [6] P. Srichandan, A. K. Mishra, H. Singh, "Data Science and Analytic Technology in Agriculture," International Journal of Computer Applications, vol. 179, no. 37, Apr. 2018.
- [7] K. G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, "A review in Machine Learning in Agriculture," Sensors, vol. 18, no. 2674, 2018.

REFERENCE LINKS

- 1.https://tse2.mm.bing.net/th/id/OIP.J0 6WLUmljgT94kNBLs wHaDw? pid=Api&P=0&h=180.
- $2. https://www.mdpi.com/remotesensing/remotesensing-08-00166/article_deploy/html/images/remotesensing-08-00166-g004.png \ .$
- 3.https://www.mdpi.com/agronomy/agronomy-14-

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH IN SCIENCE, ENGINEERING AND TECHNOLOGY

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |